If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+15x=528
We move all terms to the left:
3x^2+15x-(528)=0
a = 3; b = 15; c = -528;
Δ = b2-4ac
Δ = 152-4·3·(-528)
Δ = 6561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6561}=81$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-81}{2*3}=\frac{-96}{6} =-16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+81}{2*3}=\frac{66}{6} =11 $
| 9x-5.06=0.07 | | 2x+5=−3x+15 | | 4.905t^2-6t+4=0 | | 9-8x-7-13x=5 | | 5+x-4=3 | | 9-10x-6-5x=6 | | 3(u-7)-5u=-31 | | 1.2x=4.8/2 | | 10x-6+7x+11=90 | | 3(x+2)=8x-4 | | 5(3x+9)=-48+3 | | 15=-42n | | 4y−6=−2(−2y−1) | | 5/8x-1/2=1/5 | | 3x+6=2(x-1) | | -8m-28=-7(m+5) | | 4y+1=6y-20 | | 3x+15=3(x | | 3/5d-1/7=1/2 | | 2(7s+6)-5s=3(3s+6)+20 | | 6/7y-9=3 | | x=1.80(x)+32 | | 9x-x=-3+2x-2-1 | | x×2+7x+10=0 | | 6x+4=20+x | | 5x-6+3x+18=7x-12 | | 12x+8x-50=10× | | 4(x+5)=11. | | 3=-5/6+v | | 2(w+2)-6w=-32 | | 35x=8+2x | | 35y-10=25y+36 |